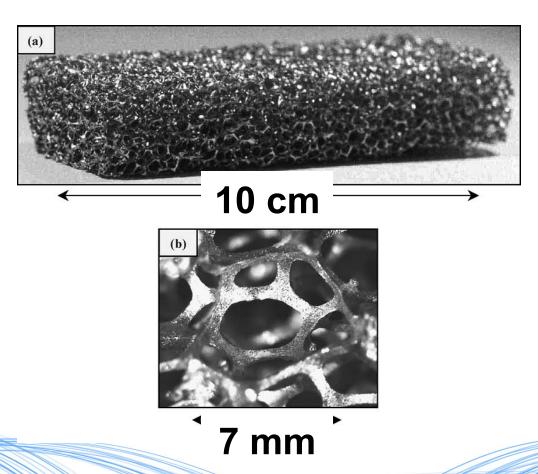
Afternoon Brainstorm:

Enabling GW 35° C heat dissipation to air – without evaporating or heating surface water

Objective

Identify

- Key challenges & needs
- Transformational technological approaches
- Technical and economic metrics


Dissipating GW of 35° C Heat to Air

- Increase surface area
- Increase heat transfer coefficient
- Increase passive or forced convective air flow rate
- Decrease parasitic load

 Innovative concepts, geometries / topologies, materials, manufacturing processes

Increase Surface Area – thermally conducting polymer, metal foam

Increase Air Speed – elevate condenser, use hyperbolic tower, Venturi effect

Wind ~10 m/s at 100 m

Increase Heat Transfer Coefficient

- Acoustic
- Coatings
- Nanostructures

Are there any technical advances in the last 10 years that may help us find a solution?

7

What new materials exist for GW to-air HXs?

Can we invent new materials for this?

What limits current materials?

Are there new manufacturing processes for current or novel HX materials?

9

Can we efficiently lower the onset of turbulent flow using

- Electrohydrodynamics
- Magnetohydrodynamics?
- Acoustics?

Are there surface treatments that might raise the to-air heat transfer coefficient?

Can we take advantage of thermosiphoning inside or outside HXs?

Venturi effect?

Are there completely new HX designs we haven't thought of?

Metrics

- Impactful if met
- Technically audacious
- Potentially achievable

What program metrics would likely produce a successful project in 3 years, such that it would be accepted and deployed in 15-10 years?

What can be done with \$3-4M in 2-3 yrs?

What can be done with \$0.5M in 1yr?

Agenda

Start	End	Activity
8:00	8:15	Registration & Breakfast
8:15	8:30	Welcome & Opening Remarks – Nicholas Cizek, ARPA-E
8:30	8:50	Power Plant Cooling – Olivier Le Galudec, Alstom
8:50	9:10	Dry Power Plant Cooling State of the Art – John
		Maulbetsch, Maulbetsch Consulting
9:10	9:30	Electronics Cooling State of the Art – Howard Davidson,
		Consultant
9:30	9:45	BREAK
9:45	11:45	Brainstorm – Technologies Enabling Dry Cooled Power
		Plants with Wet Cooled Power Plant Efficiencies or
		Better
11:45	12:45	Lunch & Review Morning Brainstorm
12:45	2:45	Brainstorm – Dissipating GW-scale Low-grade (35° C)
		Heat to Air Without Evaporating Water or Raising
		Surface Water Temperature
2:45	3:00	BREAK
3:00	3:30	Review Afternoon Brainstorm & Wrap-Up

